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Gene editing is promoted as the fastest and most 
efficient way to achieve plant breeding goals.1,2 

According to Corteva, “CRISPR-produced plants 
can be developed in just a few years versus what often 
takes decades”,3 and Bayer insists that useful crops can 
be developed “in a fraction 
of the time compared to older methods”.4 

The companies often suggest it is onerous regulations that hold back what 
would otherwise be rapidly introduced gene-edited products. Corteva argues that “treating CRISPR-
produced crops as GMOs would substantially slow down their path to market and adoption of CRISPR 
innovation in agriculture.”3

MYTH

Gene editing achieves 

desired traits more 

quickly than 

conventional breeding. 

7. Gene editing is not 
a fast or reliable route 
to desired outcomes

REALITY 

There are many lengthy 

steps in bringing a 

gene-edited product to 

market, even without 

considering regulation, 

and conventional breeding 

is more successful in 

achieving desired traits.
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However, while breeding a new plant variety is 
generally a lengthy process, there is no evidence 
that producing a viable gene-edited variety will be 
any quicker. Even in countries with light-touch 
regulations like the US and Canada, only very 
few gene-edited products have made it to market. 
A gene-edited tomato approved by the Japanese 
government in 2020, which was engineered to 
contain a compound said to lower blood pressure, 
took 15 years to develop.5 That is the same time 
period that experts estimate is needed to develop a 
sexually propagated non-GM crop – or an older-
style transgenic GM crop.6,7,8

As shown in chapter 2, gene editing and its 
associated processes (such as tissue culture) lead 
to many unintended effects, some of which will 
affect plant performance and growth as well as 
the desired trait. So gene-edited plants need to 
go through a laborious process of screening, 
selection and backcrossing with the parent lines 
to remove any obvious undesired mutations.

In addition, several years of greenhouse and 
field trials must be done to ensure that the 
desired trait expresses in a stable way through 
the generations and that the plant copes with 
environmental stresses, such as bad weather 
conditions and pest attacks.

Moreover, genetically modified products are 
normally only placed on the market once 
patents are granted – and the patenting process 
can take years. This means the overall process 
before products can be commercialised can be 
lengthy.

All this is without the time needed to put the 
plant through regulatory processes.

PROCESS FOLLOWING 
THE “EDIT” TAKES TIME
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While gene editing is 
presented as a cutting-edge 
new technology, it has actually 
been around for some years. In 
2012, Jennifer Doudna 
and Emmanuelle 
Charpentier proposed 
that CRISPR could be 
used for programmable 
editing of genomes9 
and it was first shown 
to work in plants in 
2013.10 The editing tool 
later named TALENs 
was described in 2009–
2010.11,12 Regarding 
crops engineered 
with the editing tool 
called oligonucleotide‐
directed mutagenesis (ODM), 
maize was described in 200013 
and rice in 2004.14

Yet to date, despite the 
permissive egulatory systems 
in place in North and South 
America,15 only two gene-
edited plants have made it to 
market – neither of which 
were engineered using 
the much-touted CRISPR 
technology. These are Calyxt’s 
altered-fat-profile soybean, 
engineered with TALENs,16 
and Cibus’ herbicide-
tolerant canola/oilseed rape, 
engineered with ODM. 
The ODM maize13 and rice14 
do not appear to have been 
commercialised anywhere 
in the years since they were 
announced in 2000 and 

2004. The same is true of a 
non-browning mushroom, 
engineered with CRISPR/
Cas,17 as well numerous 

other products. According to 
Testbiotech, 
“around 80 plants developed 
with new GE techniques have 
been deregulated by the US 
FDA”.18 

Consumer and food industry 
mistrust of gene-edited 
foods is also a 
delaying factor in 

commercialisation. The gene-
edited tomato approved by 
the Japanese government has 
not yet been commercialised, 

reportedly due to food 
producers shying away 
from the technology in 
the face of consumer 
rejection. A survey of 
about 10,000 people by 
the University of Tokyo 
found that 40% to 50% 
did not want to eat gene-
edited crops or animal 
products, with just 10% 
showing interest in trying 
them.5

This record suggests that 
gene editing is not the efficient 
and speedy route to obtaining 
successful agricultural traits 
that 
is 

UNIMPRESSIVE RECORD

To date, only two 

gene-edited plants 

have made it to 

market – neither 

of which were 

engineered using 

the much-touted 

CRISPR tech nology
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